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The work addresses the analogy between trivial knotting and excluded volume in looped polymer chains of
moderate length, where the effects of knotting are small. A simple expression for the swelling seen in trivially
knotted loops is described and shown to agree with simulation data. Contrast between this expression and the
well-known expression for excluded volume polymers leads to a graphical mapping of excluded volume to
trivial knots, which may be useful for understanding where the analogy between the two physical forms is
valid. The work also includes description of a new method for the computational generation of polymer loops
via conditional probability. Although computationally intensive, this method generates loops without statistical
bias, and thus is preferable to other loop generation routines in the region of interest.
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I. INTRODUCTION: FORMULATION OF THE PROBLEM

The last few years have seen significant work addressing
the effects of knotting on looped polymer chains. Of interest
to mathematicians and physicists for a good part of nine-
teenth and most of the twentieth centuries, knots were seen
by W. Thomson as a way to understand the nature of atoms
�1�, and more recently as the basis for string theory. On the
biological front, knots have been observed in �2,3� and tied
into �4,5� strands of DNA. Additionally, topoisomerases—
proteins which act to alter the topological state of DNA—are
quite common and play a significant role in cellular pro-
cesses.

The most obvious effect knotting has on a loop is in the
size, commonly measured in terms of radius of gyration, Rg

2.
For instance, the loop that is topologically equivalent to a
circle, called a trivial or 01 knot in professional parlance, is
on average larger than the loop of the same length with any
other topology. In other words, a trivial loop is larger than
the phantom loop, the latter representing a topology-blind
average over all loops of a certain length: �Rg

2�triv

� �Rg
2�phantom.

It is difficult to approach knots theoretically, because to-
pological constraints are fundamentally nonlocal, even
though they are caused by the same short-range repulsion
forces between monomers as classical self-avoidance. Luck-
ily, there is a wide range of parameters in which the effect of
self-avoidance is only marginal, while knots are clearly
present. For instance, for dsDNA, because of its low flexibil-
ity, one can safely ignore swelling due to the excluded vol-
ume for the length up to about several thousands Kuhn seg-
ments, while knots can of course exist in much shorter
molecules. A very interesting question arises when one
thinks about knots in polymers under � conditions. In this
case, the swelling due to the excluded volume is compen-
sated by the attractive forces, while the latter have no influ-
ence on the topological constraints.

The important conclusion is that the topology-driven
swelling is operational even for very thin polymers, in the
limit when volume exclusion has no effect on polymer coil
size. In this case, the phantom loop’s size �which is, once

again, average over all topologies� scales as N1/2, while the
trivial loop is larger not merely because of a larger prefactor,
but because of a larger scaling exponent, its size scales as N�,
where ��

1
2 . The conjecture, formulated a long time ago �6�,

supported by further scaling arguments �7,8�, and consistent
with recent simulation data �9–11�, specifies that the scaling
exponent � describing topology-driven swelling of a trivial
loop is exactly the same as the Flory exponent �12�, which
describes swelling driven by the self-avoidance �or excluded
volume�: ��0.589� 3

5 .
Equality of scaling exponents for the two cases reflects

the similarity of fractal properties for these systems at very
large N�1, because topological constraints result in self-
avoidance of blobs on all length scales above a certain
threshold �8�. As we understand much about self-avoidance
�13�, and next to nothing about knots, we would like to ex-
ploit the analogy to see if it yields any insights into knots.
Specifically, it is tempting to look at the dependence of the
unknotted loop size, �Rg

2�triv, on the number of segments N,
not only in the asymptotic scaling regime of very large N,
but also the corrections to scaling at not-so-large N. This is
particularly important from a practical standpoint, because
the asymptotic scaling limit is barely accessible computa-
tionally, and what one really computes is the value of �Rg

2�triv
at rather moderate N. Systematic comparison of N dependen-
cies of �Rg

2� for �trivial� knots and self-avoiding polymers
over the wide range of N is the goal of this paper.

We show that although large N scaling appears to be iden-
tical for trivial knots and excluded volume polymers, their
respective approach to the asymptotic regime is different.
This points obviously to the limited character of the analogy
between the two mechanisms of swelling, due to volume
exclusion and due to topological constraints.

The plan of the paper is as follows. We start from a brief
summary of the main results for self-avoiding polymers. Al-
though these results are widely known, we restate them in
the form most suitable for our purposes. Next, we present
some heuristic analytical arguments to shed light on why
trivial knots may behave differently than their excluded vol-
ume counterparts. With this insight in mind, we present our
detailed computational data on the N dependence of �Rg

2�triv
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over the wide range of N. To obtain data with the necessary
degree of accuracy, it is necessary to make sure that our
method of generating loops is ergodic and unbiased. Al-
though this aspect is of decisive importance, it is purely tech-
nical, and thus it is relegated to the Appendix. Up to about
Sec. II C, we mostly review the known results, starting from
Sec. II D, we present our findings.

II. PRELIMINARY CONSIDERATIONS

A. Swelling driven by self-avoidance: An overview

To make our work self-contained, we now offer a brief
review of the results for the scaling of excluded volume
polymers �see further details in Refs. �13–15��. We should
emphasize from the beginning that the main properties of the
excluded volume polymer are valid also for loops �16�. The
simplest model for excluded volume is a system in which N
beads, each of volume b, are placed along a loop with mean
separation �. All other forms of excluded volume, e.g., freely
jointed stiff rods, wormlike filaments, etc., can be mapped to
this simple rod-bead model �see, e.g., Ref. �14��. There are
two scaling regimes, with crossover at the length

N* � ��3/b�2. �1�

In terms of N*, the mean squared gyration radius �Rg
2� can be

written as �Rg
2�=�2N��z�, where the swelling factor � de-

pends on the single variable z=	N /N*. For classical polymer
applications, the large z regime is most interesting. ��z� has a
branch point singularity in infinity, its large z asymptotics are
dominated by the factor z2�−1; however, if we write ��z�
=z2�−1��z�, then ��z� is analytical in infinity and can be
expanded in integer powers of 1 /z. Accordingly, the large N
asymptotics of �Rg

2� follow:

�Rg
2�N�N* 
 �2N2�A�1 + k1�N*

N
1/2

+ k2�N*

N
1

+ ¯� .

�2�

Conversely, in the region N�N*, the approximation for �Rg
2�

is afforded by the fact that ��z� is analytical at small z and
can be expanded in integer powers of z as follows:

�Rg
2�1�N�N* 
 �2N

A�

12
�1 + k1�� N

N*1/2

+ k2�� N

N*1

+ ¯� ,

�3�

where prefactor A� should be equal to unity �which explains
why we did not absorb the factor of 1 /12 into A��. Note that
the latter result is an intermediate asymptotics, which means
the corresponding region exists only so long as N*�1 is
large, which means excluded volume is sufficiently small.

B. Swelling driven by topology: Crossover length

With this brief summary of results in mind we now set
forward, intending to systematically compare the computa-
tional results for the behavior of trivial knots to the well-
understood polymer with excluded volume.

To look at the analogy between self-avoiding polymers
and trivial knots, it is useful to start �8� by identifying the
crossover length for knots, an analog of N* �1�, which we
call N0. For knots, it is natural to identify the crossover value
of N with the so-called characteristic length of random knot-
ting N0; the latter quantity is known as the characteristic
length of the exponential decay of probability, wtriv�N�, of
formation of a trivial knot upon random closure of the poly-
mer ends �17�: wtriv
exp�−N /N0�. Depending on the specif-
ics of the model used �11,17,18�, the critical length varies
subtly around N0�300. It is also clear qualitatively �8� and
seen computationally �11� that this N0 is about the length at
which topological effect on loop swelling crosses over from
marginality at N�N0 to significance at N�N0. In particular,
it is at N�N0 that the trivial knot begins to swell noticeably
beyond the size of the phantom polymer �11�.

C. Swelling driven by topology: Above the crossover

A number of groups reported observation of the power
�� 3

5 in the scaling of trivial �9–11,19� and other topologi-
cally simple �9–11� knots in the region N�N0.

In Refs. �9,10,20�, following the idea suggested in Ref.
�22�, the N dependence of �Rg

2�triv was fitted to the formula
similar to Eq. �2� for self-avoiding polymers. No attempt was
made at physical interpretation of the best fit values of the
three coefficients �A ,k1 ,k2� or the region of N where the fit
was examined. In this sense, fitting with Eq. �2� was only
used as an instrument to find the scaling exponent �, which
in these works was found to be strikingly consistent with the
expected value of the self-avoidance exponent. A puzzling
aspect of the situation is that, particularly in Ref. �10�, the
data was fit to Eq. �2� not only in the region N�N0, but
across the crossover, starting from about N0 /3 to about 3N0
�see also Ref. �20��.

At present, we are aware of no studies which provide a
detailed comparison of excluded volume and trivial knotting
at modest N�N0. Seeking to further appraise the analogy
between trivial knotting and excluded volume, in the present
work, we address the two systems in the region below their
respective crossovers.

D. Swelling driven by topology: Below the crossover

Formula �3� is the result of perturbation theory �15�, in
which conformations with overlapping segments represent a
small part of conformational space and their exclusion is
considered a small correction to Gaussian statistics. It is
tempting to try a similar approach for knots. The idea would
be to note that at small N�N0, the probability of a nontrivial
knot is small, which implies that restricting the loop such
that it remains a trivial knot excludes only a small sector of
the conformation space which, therefore, comprises a small
correction to Gaussian statistics.

Let us try to imagine the realization of this idea. We want
to find the swelling ratio of the trivial loop

�01
= �Rg

2�triv/�Rg
2�phantom. �4�

We know that the �topology blind� ensemble average over all
knots must, by definition, yield unity for the swelling ratio
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1 = P01
�01

+ P31
�31

+ P41
�41

+ ¯ , �5�

where Pi and �i are, respectively, the probability and swell-
ing ratio of the knot i. Our plan is to consider formula �5� as
the equation from which we can determine the quantity of
interest, �01

,

�01
=

1 − P31
�31

− P41
�41

− ¯

P01

. �6�

To this point our consideration is exact, but now we
switch to hand waving arguments and guesses, mostly intui-
tive, but also partly justified by the simulation data. In the
range of small N, the ensemble of loops consists mostly of 01
knots, perturbed slightly by the presence of 31 and an even
smaller fraction of higher-order or more complex knots. We
consider then N /N0 as a small parameter: N /N0�1. Of
course, in the case of excluded volume, the similar limit is
better justified, because N*, Eq. �1�, can, at least in principle,
be arbitrarily large, leaving room for the intermediate asymp-
toticss 1�N�N*. In the case of knots, N0 is as large as
about 300, but so far we do not know why it is large, and it
seems beyond our control to make it larger. Accordingly, we
cannot speak of an intermediate asymptoticss in a math-
ematically rigorous way �23�. Nevertheless, we assume here
that the numerically large value of N0 allows us to hope that
the asymptotic argument is possible, and so we assume that
N /N0 is a small parameter, while N is still large compared at
unity. We guess then that higher-order knots provide only
higher-order perturbation corrections with respect to this pre-
sumably small parameter N /N0, and we neglect their contri-
butions, simplifying the ensemble by accounting for only 01
and 31 knots. In this case, P01

+ P31

1. This is justified by

the data presented in Fig. 1, which shows that higher knots
are very rare indeed as long as N /N0�1. Since we know that
P01


exp�−N /N0�, we can also find P31
. Given that we con-

sider the N /N0�1 regime, we must also linearize the expo-
nent, which yields

�01



1 − �1 − P01
��31

P01



1 − �1 − e−N/N0��31

e−N/N0


 �1 − �N/N0��31
�„1 + N/N0… . �7�

The next step requires thinking about �31
. In principle, we

can come up with a chain of equations, not unlike the
Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� chain in
the theory of fluids, expressing �31

in terms of higher knots,
etc. A more practical course is to note that for the lowest
order in perturbation, with respect to the supposedly small
parameter N /N0, since �31

has already the small �N /N0� co-
efficient in front of it, it is enough to replace �31

with a
constant at N /N0→0. Thus, to the lowest order in N /N0
�1, we get �N /N0��31


�N /N0�c, where c is a constant. We,
therefore, finally obtain

�01

 1 + �N/N0��1 − c� , �8�

or

�Rg
2�triv 
 �2N

1

12
�1 + � N

N0
�1 − c�� . �9�

To be careful, we should mention here that simulation
data for �31

, shown in the inset in Fig. 3, do not look
constant—and they should not. To understand why we have
legitimate right to replace �31

with a constant at N /N0→0,
one should correctly understand the idea of intermediate as-
ymptoticss. The point is that �31

does not approach 0 as
N /N0 decreases. As long as N�1, �31

approaches some non-
zero constant, which we called c above. A closer look at the
simulation data might allow some fit of the form �31

�N�N0

c+c��N /N0�	, with parameters c��0 and 0�	�1. A bet-
ter understanding of this fit is an exciting task for the future,
but for our purposes here it is enough to realize that higher
resolution in the fit will only contribute to the subleading
correction term in the perturbative expression for �Rg

2�triv, the

FIG. 1. �Color online� Fractional abundance
of 01, 31, and 41 knots within the ensemble of all
looped polymer chains of fixed step length. The
01 abundance follows the well-known �3,17,18�
exponential decay, A exp�−N /N0� with decay
length N0=255 and prefactor A�1.05. Pertinent
to the notion of higher-order knots acting as a
perturbation is that the abundance of 31 and 41

knots, seen in the inset, is quite low in the N
�N0 region.

LIMITS OF ANALOGY BETWEEN SELF-AVOIDANCE … PHYSICAL REVIEW E 72, 061803 �2005�

061803-3



leading term will remain linear in N /N0, as stated in our
formula �9�. The same is true in regard to the corrections
caused by the higher order knots beyond 31.

The difference between Eqs. �3� and �9� is immediately
obvious: the former is an expansion in powers of 	N, the
latter starts from the first power of N. The 	N term does not
occur in our expansion for knots. Note that the values of the
ki� coefficients in Eq. �3� are known �15�, and this prevents
the easy �and incorrect� explanation that k1�=0. As regards
the value of coefficient c, we do not have at present an ana-
lytical means to calculate it, we will later estimate it based
on the simulation data. Thus, despite identical scaling index
at large N, trivially knotted and excluded volume polymers
exhibit a very different mathematical structure of N depen-
dence in their respective gyration radii in the region of small
N.

It is possible that another manifestation of the same dif-
ference is the fact that data in Ref. �10� were successfully
fitted to the Eq. �2� across the crossover region, where this
formula for the self-avoiding polymers is not supposed to
work.

Thus, our considerations suggest that there is some fun-
damental difference between topology and self-avoidance in
terms of their respective effects on the swelling at moderate
N. In what follows, we present computational tests support-
ing and further developing this conclusion.

III. MODEL AND SIMULATION METHODS

We model polymer loops as a set of N+1 vertices, x�i,
embedded in 3D, where x�0=x�N implies loop closure. The
step between successive vertices, y� i=x�i+1−x�i is constructed
either from steps of fixed length, with probability density

P�y� i� =
1

4
�2���y� i� − �� , �10�

or Gaussian distributed, with probability density

P�y� i� = � 3

2
�23/2

exp�−
3�y� i�2

2�2  . �11�

Note that �, the “average” step length, is defined, �2

=�P�y�y2d3y. Many methods have been used to generate
loops in computer simulation over the past decade. A brief
review of the methods is available in Appendix A, the details
of the method implemented in this work are presented in
Appendix B.

Once generated, we assess the loop’s size by calculating
its radius of gyration

Rg
2 =

1

2N2�
i�j

�x�i − x� j�2. �12�

The mean square average radius of gyration seen over all
loops is �Rg

2�= 1
12�N+	�l2, where 	=1 for fixed step length

loops and 	=−1/N for loops of Gaussian distributed step
length. Noting that the excluded volume constraint is main-
tained by the condition that pair distances be larger than
excluded volume bead diameter, rij = �x�i−x� j� ,rij �d, we
record the minimum rij for each coil, which enables us to
ascertain what maximum diameter of excluded volume d the
loop corresponds to �24�. Finally, we calculate the topologi-
cal state of the loop by computing the Alexander determi-
nant, �−1�, and Vassiliev knot invariants of degrees 2 and 3,
v2 and v3, the implementation of which is described in Ref.
�25�. As the simulation progresses, averages are accumulated
in a matrix, indexed over different knot types and minimum
pair distances. In the end, we can collect the data to find the
gyration radius for either a particular knot type irrespective
of pair distances �i.e., without volume exclusion�, or for a
particular excluded volume value irrespective of topology.

IV. RESULTS

A. On the functional form of N dependence of the gyration
radius in the moderate N regime

Figure 2 provides direct comparison of the computation-
ally determined mean square gyration radius for trivial knots
and phantom loops with excluded volume �averaged over all

FIG. 2. �Color online� Direct comparison of
excluded volume and trivial knot swelling �01

be-
yond the phantom average size for loops of fixed
step length. Excluded volume is formulated in
terms of N beads of diameter d, each centered at
an universal joint between loop segments. Exclu-
sion is maintained by prohibiting bead overlap,
�x�i−x� j��d for all i� j. As discussed in Sec. II D,
and in contrast to the region above their respec-
tive crossovers, in the small N�N0 regime,
trivial knots follow a functional form different
from that of excluded volume loops.
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topologies�, in the latter case—for various values of the bead
diameter.

Note that in the figure, the gyration radius is expressed
with the swelling ratio �, as defined in Eq. �6�. The most
striking feature of this figure is the differently shaped curves
of swelling. The region of intermediate N visible in the fig-
ure, 1�N�N0, shows the plot of trivial knot swelling pass-
ing through all excluded volume curves. As seen, the very
shape of the �01

curve is different. Specifically, all curves for
the excluded volume loops are bent downward, consistent
with the presence of the 	N terms in Eq. �3�. In contrast, the
curve for the topologically restricted trivial loop is very
nicely linear. A fit of the form

�01
= 0.998 + N/1437 � 1 + 0.18N/N0, �13�

consistent our estimate, Eq. �9�, where N0=255, is shown in
Fig. 3. Note that deviation from the linear form occurs as N
increases. This is entirely expected as the crossover to
asymptotic swelling of the gyration radius, N2� /N�N0.19,
must occur as N grows beyond N0.

B. Which excluded volume diameter matches most closely
the topological swelling of trivial knots?

The crossover points between curves of trivially knotted
loops and loops with excluded volume in Fig. 2 inspired the

idea of plotting the excluded volume diameter at each N
whose swelling matches the swelling of a trivial knot at the
same N. As seen in Fig. 4, this mapping parameter seems to
approach an asymptote at the specific diameter of d
=0.1625. While at present it is not computationally feasible
to extend the scale of N to significantly larger values, this
asymptotic approach of trivial knot swelling to loops with
excluded volume is consistent with the similar asymptotic
swelling of N2� seen in other work �9–11�.

At the same time, it is interesting to note that although the
swelling parameter due to the excluded volume at d�0.16
seems to fit the topologically driven swelling, the corre-
sponding characteristic length N* �see Eq. �1�� is signifi-
cantly larger than N0. To see this, we note that the excluded
volume data in Fig. 2 fit reasonably well to the expression
��1+1.71	N�d /��3=1+	N /N*, where, therefore, N*

=0.34�d /��6. Here, we determined, based on the fit, the nu-
merical coefficient intentionally left undetermined in formula
�1�. At d=0.16�, we get, therefore, N*�20 000, which is
almost 2 orders of magnitude greater than N0�255. Alterna-
tively, this situation can be seen by finding the excluded
volume diameter for which crossover length N* matches
N0 : N*=N0; the corresponding d equals d�0.33�. It is fairly
obvious that this value of excluded volume does not agree
well with the data presented in Fig. 4. This discrepancy pos-

FIG. 3. �Color online� Average gyration ra-
dius data for trivially knotted loops of fixed step
length. Loops were generated with the condi-
tional probability method described in Appendix
B. Swelling of the gyration radius is seen to be
linear in the small N regime and can be under-
stood initially as the result of a perturbation.

FIG. 4. �Color online� The excluded volume
bead diameter which gives the same �Rg

2� swell-
ing as the group of trivially knotted loops. Unlike
other figures in the publication, loops here are
generated conditionally with Gaussian-distributed
step length. This is done for feasibility reasons, as
computationally, Gaussian-distributed steps are
easier to generate than loops of fixed step length.
As seen in the image, the excluded volume diam-
eter seems to saturate at about d=0.1625. This
saturation is consistent with the notion of the
trivial knot gyration radius average approaching
the N2� asymptotic when N�N0. Although not
tested, we expect that fixed step length loops
would exhibit similar saturation at a specific ex-
cluded volume diameter.
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sibly points at yet another difference between swelling
driven by topology and excluded volume.

V. CONCLUSIONS

It seems quite clear from our simulation data that the anal-
ogy between excluded volume and trivial knotting does not
hold at loop sizes smaller than the crossover for knots N0.
The nature of the swelling function ��N� in this region is yet
unknown. Although our cursory explanation accounts for the
trivial knot data’s linear trend in this regime, the similar pa-
rameter for the size of more complex knots behaves nonlin-
early, and we currently have no explanation for this. A more
systematic treatment of the problem is badly needed to un-
derstand the size behavior of knots.

That said, our data showing the mapping of excluded vol-
ume diameter to trivial knot size seems to reinforce the no-
tion that asymptotically, the two classes of objects scale with
the same power.

We express thanks to R. Lua of the University of Minne-
sota for the use of his knot analysis routines. We also wish to
thank the Minnesota Supercomputing Institute for the use of
their facilities. This work was supported in part by the
MRSEC Program of the National Science Foundation under
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APPENDIX A: A BRIEF REVIEW OF LOOP GENERATION
METHODS

A number of methods exist and have been used in the
literature for the computational generation of looped poly-
mers. The goal of generation methods is to produce statisti-
cally representative and unbiased sets of mutually uncorre-
lated loops. The generation of a random walk is a simple
matter. Steps are chosen with isotropic probability until the
desired length is reached. Creating random walks with biased
probability, specifically, walks which return to the origin af-
ter a specified number of steps, is a more difficult task. As
many studies of the topological properties of polymer chains
have been completed, we do not intend to make an exhaus-
tive summary of all work, but rather in broad strokes sum-
marize the generation methods used in the field.

All methods used to generate loops can be grouped into
two large categories. Methods of one group start from some
loop configuration which does not pretend to be random, and
then transform it in some way to randomize the set of steps
making the loop. Methods of the other group build more or
less random loops from the very beginning.

One of the initial techniques used for the generation of
loops is the dimerization method of Chen �26,27�, in which
smaller sets of walks are joined end to end to form larger
walks or loops. This “ring dimerization” accepts the joining
of smaller walks with some probability, as self-intersections
between the chains are prohibited. In addition, if the gener-
ated walk is closed to form a loop, a statistical weight is
calculated to account for loop closure. Several groups have
used this method �17,21�, usually in the context of including
excluded volume in the topological study.

Other workers �9,19� start with an initial loop conforma-
tion and then modify it by applying a number of “elbow”
pivot moves on randomly selected sections of the loop. Spe-
cifically, if the loop is defined by N vertices �x�i�, a pivot
move is performed by selecting two vertices, x� j and x�k, and
then rotating by a random angle the intermediate vertices x� j+1
through x�k−1 about the axis made by x�k−x� j.

A third method in common use, the so-called “hedgehog”
method �10,28�, starts by generating N /2 pairs of mutually
opposite bond vectors. The resulting set of N vectors has
zero sum, and it is tempting to reshuffle them and then use
them as bond vectors, thus surely obtaining a closed loop.
Unfortunately, such a loop has obviously correlated seg-
ments, the most striking manifestation of which is that the
loop has self-intersections with a large probability of order
unity �in fact, 1 /e�0.37 �29�, see also a related scaling ar-
gument in Ref. �11��. To overcome this, it was suggusted by
Dykhne, and later described in Ref. �28�, that one imagine all
N vectors plotted from the origin and thus forming some-
thing like a hedgehog, then randomly choosing pairs of vec-
tors �hedgehog needles� and rotating the pair by a random
angle about their vector sum. This operation does not change
the sum of all N vectors, which remains 0, and therefore,
upon sufficiently many such operations and upon reshuffling
all vectors, one can hope to obtain a well-randomized loop.

The hedgehog method and elbow moves method are in
fact quite similar. Indeed, in both cases, the idea is to rotate
some bond vectors around their vector sum; in the hedgehog
method it is done with pairs of vectors before reshuffling, in
the elbow moves method it is done after reshuffling with a
set of subsequent bonds, but the idea is the same. In both
cases, the evolution of loop shape can be described by Rouse
dynamics, known in polymer physics �see, e.g., Ref. �14��.
This allows us to make a simple estimate as to how many
moves are necessary in order to wash away correlations im-
posed by the initial loop configuration. Rouse dynamics can
be understood as diffusive motion of Fourier modes. Since
the longest wave Fourier mode has a wavelength which
scales as N, the longest relaxation time in Rouse dynamics
scales as N2. This estimate is valid for physical dynamics in
which all segments move at the same time. Translated into
computational language, this implies that every monomer
has to make about N2 moves, which means that we have to
make about N3 random moves for proper removal of corre-
lations. Unfortunately, this point is rarely mentioned in the
use of these algorithms �see, however, Ref. �19�� and the
number of moves between sampling is generally quite small,
which puts into question the ergodicity of implementations
of this algorithm.

To overcome this problem, we proposed, in Ref. �11�,
another method which we call the method of triangles, which
does not involve any relaxation. In this method, we generate
N /3 randomly oriented triplets of vectors with zero sum,
reshuffle them, and connect them head-to-tail, thus obtaining
a loop. As we shall explain in another publication, this
method produces loops with insignificant correlations when
N is larger than 100 or so.

Since our major attention in this paper is the range of
relatively small N, we have to resort to a computationally
more intensive, but reliably unbiased method based on con-
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ditional probabilities. The idea is to generate step number i in
the loop of N steps using the conditional probability that the
given step arrives to a certain point provided that after N− i
more steps, the walk will arrive at the origin. This method
was suggested and implemented for Gaussian chains in Ref.
�30�. Here, we apply it for the loops with fixed step length.

APPENDIX B: GENERATION OF LOOPS WITH FIXED
STEP LENGTH USING THE CONDITIONAL

PROBABILITY METHOD

1. Derivation of the conditional probability method

A walk is composed of N steps between N+1 nodes, a
step from nodes x�i to x�i+1 having normalized probability,
g�x�i ,x�i+1 ,1�. The probability for a random walk composed of
N such steps is described by the Green’s function which ties
the steps together,

G�x�0,x�N,N�

=� g�x�1 − x�0�g�x�2 − x�1� ¯ g�x�N − x�N−1�dx�1dx�2 ¯ dx�N−1.

�B1�

Note that in this notation, the walk stretches from x�0 to x�N.
The specifics of integration depend on the sort of steps which
are being taken. At times, these integrations can be difficult
to evaluate. In such cases, the convolution theorem can be of
some utility. Suppose that the Fourier transform and inverse
is defined in the usual way,

gk� = 	� g�x��exp�ik� · x��dx� ,

g�x�� = 	� gk� exp�− ik� · x��dk� . �B2�

Note that in this formulation, 	= �2
�−3/2. The convolu-
tion theorem allows for the following expression for N�2,

G�x�0,x�N,N� = �1/	�N−2� �gk��N exp�− ik� · �x�N − x�0��dk� .

�B3�

If the step length is fixed to a certain distance �, the prob-
ability distribution and its Fourier transform are expressed,

g�x�0,x�1,1� fixed =
���x�1 − x�0� − ��

4
l2 ,

gk� = 	
sin�k��

k�
. �B4�

Using Eqs. �B3� and �B4�, along with differential volume
dk� =2
k2dkd�cos ��, the probability distribution for a walk
of N fixed-length steps spanning the displacement x�N−x�0 is

G�x�0,x�N,N� fixed = 	24
�
0

� � sin�k��
k�

�Nsin�k�x�N − x�0��
k�x�N − x�0�

k2dk .

�B5�

If we use the definition of 	 and express sine terms as
exponentials, also using d= �x�N−x�0� /�, then

G�x�0,x�N,N� fixed =
1

2
2�
0

� �exp�ik�� − exp�− ik���N�exp�ik�d� − exp�− ik�d��
�2ik��N+1d

k2dk . �B6�

Then using the Newton binomial �x+y�N=�m=0
N � N

m
�xN−mym, where � N

m
�=n! / ��n−m� !m ! � yields a shiny prize, an analytically

tractable expression,

G�x�0,x�N,N� fixed =
1


2

1

2N+2iN+1�N+1d
�

0

�

�
m=0

N �N

m
 �exp�ik���N−m�− exp�− ik���m�exp�ik�d� − exp�− ik�d��

kN−1 dk . �B7�

At this point, two further simplifications are made. The first is to extend the integration from −� to �, as the integrand is even
on the real axis �with proper incorporation of the factor of 1

2 �. The second simplification is to integrate over the dimensionless
number �=k�. Note that the dimension of the integral remains 1/volume.

G�x�0,x�N,N� fixed =
1


2

N!

2N+3iN+1�3d
�

−�

�

�
m=0

N
�− 1�m

�N − m� ! m!

exp�i��N − 2m + d�� − exp�i��N − 2m − d��
�N−1 d� . �B8�

The integral which remains can be evaluated as a contour
integral in the complex plane. The contour along the real axis
is chosen with a small bump in the +i direction at �=0. The
upper or lower arch is chosen according to Jordan’s lemma.

The residue at �=0 is obtained by Taylor expanding the
exponent to resolve the coefficient corresponding to the
�−1 term, which is the definition of a residue. The result
follows:
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�
−�

� exp�i���
�N−1 d� = � 0, if � � 0

− 2
i� 1

�N − 2�!
�i��N−2�, if � � 0 � .

�B9�

Integration winnows the sum considerably, the final result is,

G�x�0,x�N,N� fixed =
N�N − 1�
2N+2
l3d

�J1�N,d� − J2�N,d�� , �B10�

where

J1�N,d� = �
m��N+d�/2

N
�− 1�m

�N − m� ! m!
�N − 2m + d�N−2, �B11�

and

J2�N,d� = �
m��N−d�/2

N
�− 1�m

�N − m� ! m!
�N − 2m − d�N−2. �B12�

A table of probabilities can then be composed. Note, how-
ever, that the probability is defined on intervals over d, listed
in the right column below.

G�x�0,0,3� fixed =
1

8
�3d
, if d � �0,2� ,

G�x�0,0,3� fixed = � �1�/�8
�3�, if d � �0,1�
�3 − d�/�16
d�3�, if d � �1,3� � ,

G�x�0,0,4� fixed = � �8 − 3d�/�64
�3�, if d � �0,2�
�d − 4�2/�64
�3d�, if d � �2,4� � ,

G�x�0,0,5� fixed = ��5 − d2�/�64
�3�, if d � �0,1�
�2d3 − 15d2 + 30d − 5�/�192
�3d�, if d � �1,3�
− �d − 5�3/�384
�3d�, if d � �3,5�

� ,

G�x�0,0,6� fixed = ��5d3 − 24d2 + 96�/�1536
�3�, if d � �0,2�
�− 5d4 + 72d3 − 360d2 + 672d − 240�/�3072
�3d�, if d � �2,4�
�d − 6�4/�3072
�3d�, if d � �4,6�

� . �B13�

These piecewise-defined probability distributions approach
the shape of the corresponding quantity for Gaussian-
distributed step length,

G�x�0,x�N,N�gaussian = � 3

2
N�23/2

exp�−
3

2N�2 �x�N − x�0�2� .

�B14�

Due to the complexity and computational expense of the
conditional method, and noting the apparent similarity of the
two curves, one might be tempted to substitute the Gaussian
formulation, Eq. �B14�, when N is above some threshold N
�Nc. Our own experience with this approximation leads us
to discourage the intermingling of the two distributions.
When included, at even the large Nc=30, a sharp discontinu-
ity in the curve of curve for �01

vs N �Fig. 3� was visible at
Nc. We hypothesize that substitution of the Gaussian formu-
lation, Eq. �B14�, for the fixed-step formulation, Eq. �B10�,
allows for slightly more inflated loop conformations and thus
leads to a discontinuity when the approximation is used in
the simulation code at N�Nc.

2. Implementation of conditional probability method

Generation of a random walk which is looped, i.e., x�N
−x�0=0, can be achieved with the use of the already derived
equations. Imagine that a walk of N+M steps is underway
and M steps have already been taken. This means that a walk
of N steps remains, which starts at the present location x�0 and
finishes at the starting point x�N. The probability distribution
for the next step, from x�0 to x�1, can then be written,

P�x�0�x�1� =
G�x�0,x�1,1�G�x�1,x�N,N − 1�

G�x�0,x�N,N�
. �B15�

In principle, one could generate new steps with probability
isotropic in direction, accepting them with conditional prob-
ability defined by Eqs. �B10� and �B15� or �B14�. In the
interest of efficiency, a better method is to generate random
steps within these probability distributions. Now discussed is
the way to transform a flat random distribution �that pro-
duced by the UNIX math function DRAND48��, for example�
into the distribution above. If the flatly distributed variable is
q, i.e., P�q�=1 on �0,1�, 0 elsewhere, the following equation,

N. T. MOORE AND A. Y. GROSBERG PHYSICAL REVIEW E 72, 061803 �2005�

061803-8



with d� =x�N−x�1, defines the transform to the conditional dis-
tribution above, G�x��,

�
0

q

P�q��d�q�� = �
0

f�q� G�x�0,x�1,1�G�d� ,0,N − 1�
G�x�0,x�N,N�

d�d�� .

�B16�

In this statement of normalization, the function of impor-
tance is f�q�, which defines the way the two probability dis-
tributions are made equal.

In principle, the problem is now solved. A complete set of
probability distributions for walks of fixed or Gaussian step
length has been defined, and the the formula which maps that
distribution to a flat, machine-generated distribution has also
been expressed. If the form of Eq. �B16� is simple enough,
meaning relatively small N, the integral equation can be
solved directly for f�q�. In practice however, N�5 is an
interesting regime and a different technique must be used to
obtain f�q�.

For the case of finishing a random walk of fixed length
steps �, which is x� away from the ending point, and has N
steps alloted to get to that point, we use the geometry shown
in Fig. 5. In this diagram, x�p is the new distance away from
the endpoint after the present step is taken. Thus, the expres-
sion above becomes

�
0

q

P�q��dq� = �
0

f�q� G�l�,1�G�x�p,N − 1�
G�x�,N�

d�x�p� , �B17�

where, for convenience, the following syntax is used,

G�b� ,0 ,N�=G�b� ,N�.
Of course, the single step G�d� ,1� is a delta function,

���d� �−�� /4
�2, so the integration over d�x�p� occurs over

most or all of the spherical shell created by the possible
orientations of �. Integration over the shell �about the axis
made by x�� is performed in “rings,” each ring having circum-
ference 2
� sin���, and width �d���, with resulting differen-
tial area, dA=2
�2 sin���d���. � is integrated over the range
�0,
�.

It should be apparent that xp
2=x2+�2+2x� cos���. This

yields the differential transform, sin���d���= �xp /x��d�xp�.
This simplification allows the integration of Eq. �B17� in the
following way:

�
0

q

P�q��dq� =
1

2�xG�x,N��min

f�q�

G�x�p,N − 1�xpd�xp� .

�B18�

This expression is normalized to 1 if integrated over appro-
priate xp bounds. In most cases, those bounds are �x−� ,x
+��, although the physical limit on the upper bound, xp

� �N−1�� is necessary to keep the walk from straying too far
from the origin. Additionally, if the walk is very close to the
origin x��, the integration bounds, ��+x ,�−x�, are used.

As Eq. �B12� for fixed step length probability is defined
as a polynomial, integration of that polynomial, described by
Eq. �B18�, can be performed exactly within simulation com-
puter code, and the resulting equation for f�q� solved nu-
merically. In practice, we use the Gnu Multiple Precision
library to represent the polynomial coefficients and values as
rational numbers. From a computational standpoint, this is
significantly more expensive than representing coefficients
as double floating points, but using rationals allows us to
represent all outputs of the polynomial with great accuracy,
which is the goal of this simulation method. At a relatively
small number of steps, the coefficients become quite small,
for example, at N=15, in the region x� �13,15�, Eq. �B12�
reads −�d−15�13/ �40 809 403 514 880��3d
��. We feel the
need in this routine to retain accuracy when performing op-
erations such as P−Q, where P�1 and Q�1, but �P−Q�
� P ,Q. In order to retain the accuracy of the conditional
formulation, it was imperative to perform this rational num-
ber algebra. For the interested reader, we provide a table of
these polynomial coefficients as supplementary materials
�31�.
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